skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paik, H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Superconducting nickelates are a new family of strongly correlated electron materials with a phase diagram closely resembling that of superconducting cuprates. While analogy with the cuprates is natural, very little is known about the metallic state of the nickelates, making these comparisons difficult. We probe the electronic dispersion of thin-film superconducting five-layer ( n = 5 ) and metallic three-layer ( n = 3 ) nickelates by measuring the Seebeck coefficient S . We find a temperature-independent and negative S / T for both n = 5 and n = 3 nickelates. These results are in stark contrast to the strongly temperature-dependent S / T measured at similar electron filling in the cuprate La 1.36 Nd 0.4 Sr 0.24 CuO 4 . The electronic structure calculated from density-functional theory can reproduce the temperature dependence, sign, and amplitude of S / T in the nickelates using Boltzmann transport theory. This demonstrates that the electronic structure obtained from first-principles calculations provides a reliable description of the fermiology of superconducting nickelates and suggests that, despite indications of strong electronic correlations, there are well-defined quasiparticles in the metallic state. Finally, we explain the differences in the Seebeck coefficient between nickelates and cuprates as originating in strong dissimilarities in impurity concentrations. Our study demonstrates that the high elastic scattering limit of the Seebeck coefficient reflects only the underlying band structure of a metal, analogous to the high magnetic field limit of the Hall coefficient. This opens a new avenue for Seebeck measurements to probe the electronic band structures of relatively disordered quantum materials. Published by the American Physical Society2024 
    more » « less
  2. Alkali antimonide semiconductor photocathodes provide a promising platform for the generation of high-brightness electron beams, which are necessary for the development of cutting-edge probes, including x-ray free electron lasers and ultrafast electron diffraction. Nonetheless, to harness the intrinsic brightness limits in these compounds, extrinsic degrading factors, including surface roughness and contamination, must be overcome. By exploring the growth of CsxSb thin films monitored by in situ electron diffraction, the conditions to reproducibly synthesize atomically smooth films of CsSb on 3C–SiC (100) and graphene-coated TiO2 (110) substrates are identified, and detailed structural, morphological, and electronic characterization is presented. These films combine high quantum efficiency in the visible (up to 1.2% at 400 nm), an easily accessible photoemission threshold of 566 nm, low surface roughness (down to 600 pm on a 1 μm scale), and a robustness against oxidation up to 15 times greater than Cs3Sb. These properties lead us to suggest that CsSb has the potential to operate as an alternative to Cs3Sb in electron source applications where the demands of the vacuum environment might otherwise preclude the use of traditional alkali antimonides. 
    more » « less
  3. null (Ed.)
    Abstract Superconductivity is among the most fascinating and well-studied quantum states of matter. Despite over 100 years of research, a detailed understanding of how features of the normal-state electronic structure determine superconducting properties has remained elusive. For instance, the ability to deterministically enhance the superconducting transition temperature by design, rather than by serendipity, has been a long sought-after goal in condensed matter physics and materials science, but achieving this objective may require new tools, techniques and approaches. Here, we report the transmutation of a normal metal into a superconductor through the application of epitaxial strain. We demonstrate that synthesizing RuO 2 thin films on (110)-oriented TiO 2 substrates enhances the density of states near the Fermi level, which stabilizes superconductivity under strain, and suggests that a promising strategy to create new transition-metal superconductors is to apply judiciously chosen anisotropic strains that redistribute carriers within the low-energy manifold of d orbitals. 
    more » « less